A New Catabolic Plasmid in Xanthobacter and Starkeya spp. from a 1,2-Dichloroethane-Contaminated Site.

نویسندگان

  • Jacob E Munro
  • Elissa F Liew
  • Mai-Anh Ly
  • Nicholas V Coleman
چکیده

UNLABELLED 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1 Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more recently isolated DCA-degrading Xanthobacter strains from Australia, in which a relatively small circular plasmid (pDCA) carries both dhlA and dhlB homologs. pDCA represents a true organochlorine-catabolic plasmid, first because its only obvious metabolic phenotype is dehalogenation of organochlorines, and second because acquisition of this plasmid provides both key enzymes required for carbon-chlorine bond cleavage. The discovery of the alternative haloacid dehalogenase dhlB2 in pDCA increases the known genetic diversity of bacterial chloroacetate-hydrolyzing enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1, 2-dichloroethane by Xanthobacter autotrophicus.

Carbon isotope fractionation during aerobic mineralization of 1, 2-dichloroethane (1,2-DCA) by Xanthobacter autotrophicus GJ10 was investigated. A strong enrichment of (13)C in residual 1,2-DCA was observed, with a mean fractionation factor alpha +/- standard deviation of 0.968 +/- 0.0013 to 0.973 +/- 0.0015. In addition, a large carbon isotope fractionation between biomass and inorganic carbon...

متن کامل

Kinetics of bacterial growth on chlorinated aliphatic compounds.

With the pure bacterial cultures Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, and Pseudomonas sp. strain AD1, Monod kinetics was observed during growth in chemostat cultures on 1,2-dichloroethane (AD20, AD25, and GJ10), 2-chloroethanol (AD20 and GJ10), and 1,3-dichloro-2-propanol (AD1). Both the Michaelis-Menten constants (K(m)) of the first catabolic (dehalogenating) ...

متن کامل

Identification of chloroacetaldehyde dehydrogenase involved in 1,2-dichloroethane degradation.

The degradation of 1,2-dichloroethane and 2-chloroethanol by Xanthobacter autotrophicus GJ10 proceeds via chloroacetaldehyde, a reactive and potentially toxic intermediate. The organism produced at least three different aldehyde dehydrogenases, of which one is plasmid encoded. Two mutants of strain GJ10, designated GJ10M30 and GJ10M41, could no longer grow on 2-chloroethanol and were found to l...

متن کامل

Engineering a catabolic pathway in plants for the degradation of 1,2-dichloroethane.

Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize th...

متن کامل

Genetic adaptation of bacteria to halogenated aliphatic compounds.

The bacterial degradation and detoxification of chlorinated xenobiotic compounds requires the production of enzymes that are capable of recognizing and converting compounds which do not occur at significant concentrations in nature. We have studied the catabolic route of 1,2-dichloroethane as an example of a pathway for the conversion of such a synthetic compound. In strains of Xanthobacter and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 82 17  شماره 

صفحات  -

تاریخ انتشار 2016